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ABSTRACT
Biofouling is a major challenge for sustainable shipping, filter membranes, heat exchangers, and
medical devices. The development of fouling-resistant coatings requires the evaluation of their
effectiveness. Such an evaluation is usually based on the assessment of fouling progression after
different exposure times to the target medium (e.g. salt water). The manual assessment of mac-
rofouling requires expert knowledge about local fouling communities due to high variances in
phenotypical appearance, has single-image sampling inaccuracies for certain species, and lacks
spatial information. Here an approach for automatic image-based macrofouling analysis was pre-
sented. A dataset with dense labels prepared from field panel images was made and a convolu-
tional network (adapted U-Net) for the semantic segmentation of different macrofouling classes
was proposed. The establishment of macrofouling localization allows for the generation of a
successional model which enables the determination of direct surface attachment and in-depth
epibiotic studies.
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Introduction

Biofouling is the process of the undesired accumula-
tion of biological matter and organisms, which occurs
whenever an artificial surface and a living system get
in contact. It causes an increase in friction, energy
consumption, and running maintenance costs and
reduces the efficiency and lifespan of machines such
as ships, filter membranes, and heat exchangers
(Schultz 2007; Flemming 2020). Furthermore, it indu-
ces infections during medical treatments and medical
device failure resulting in high costs every year (Bixler

and Bhushan 2012). Thus, biofouling is still one of
the main challenges for modern materials exposed to
aquatic environments (Flemming 2011).

The large diversity of biofouling species (Holm
2012) is a major difficulty as their sizes cover a par-
ticularly large range (Nurioglu et al. 2015) spanning
from nanometers for conditioning films (e.g. organic
molecules, proteins), over micrometers for microfoul-
ing (e.g. bacteria, diatoms, cells), to millimeters and
centimeters for human-visible macrofouling (e.g. bar-
nacles, bryozoans, seaweed). As these colonization
stages do not follow a linear “successional” model, the
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prevention of biofilm formation does not always
inhibit macrofoulers from colonizing a clean surface
(Callow and Callow 2011). Therefore, a precise ana-
lysis of the fouling community on all size scales over
long periods, usually months or years, is necessary to
evaluate the performance of protective coatings. These
times series of coated panels, with several panels per
coating, per location, and per static or dynamic
experiment, produce large amounts of high-resolution
image data, which is evaluated by marine biology
experts to judge trends. Further, the high diversity
(Holm 2012), seasonality (Kerckhof et al. 2010), local
conditions (Canning-Clode and Wahl 2009), and
intra-species variability affect the occurrence of spe-
cies and their macroscopic structure, texture, and
color making it sometimes difficult to accurately iden-
tify the correct fouling type at every pixel. Therefore,
the precise assessment of fouling species is a very
demanding but crucial task to provide feedback to
material developers about the performance of their
coatings. In addition to seasonal variations, the ocean
warming, water acidification, and changes in gyres
have consequences for biofouling communities
(Poloczanska and Butler 2009; Dobretsov et al. 2019),
their settlement, growth, composition, and production
of bioactive molecules. These are indicators for cli-
mate change but also demand a fast adaption of cur-
rent antifouling solutions to these rapidly shifting
conditions.

The adsorption of conditioning films on coatings is
typically investigated in vitro for example by surface
plasmon resonance spectroscopy with model bioma-
cromolecules (Pranzetti et al. 2012; Koc et al. 2019)
and unavoidable in natural living systems. For micro-
fouling or “slime”, there exists numerous automated
microscopy based solutions with high accuracies for
the detection or classification of foremost diatoms in
drinking water samples (Coltelli et al. 2014; Pedraza
et al. 2018; Tang et al. 2018; Ruiz-Santaquiteria et al.
2020) and in complex, mixed species environments
(Deng et al. 2021) particularly on coatings after field
tests (Krause et al. 2020). But for macrofouling,
encountering the wide range of size scales and the
differences between early and later stages of fouling is
necessary. The field of remote sensing offers several
solutions for the underwater detection and segmenta-
tion of marine organisms growing relatively large on
static offshore structures (Gormley et al. 2018), such
as corals in benthic communities (Beijbom et al. 2015;
King et al. 2018; Alonso et al. 2019; Pavoni et al.
2020; Chen et al. 2021) and macroalgae (Balado et al.
2021). In contrast, communities growing under

dynamic conditions on primarily moving vessels have
a different composition (Bloomfield et al. 2021),
smaller sizes, and consist of early growth stages due
to periodic cleaning. The fouling of ship hulls is typ-
ically investigated by underwater photography
(O’Byrne et al. 2020; Peng et al. 2020; Bloomfield
et al. 2021; First et al. 2021) to quantify the biofouling
coverage and manage the biosecurity risk of invasive
species. However, for the analysis of panels with
experimental coatings it is common practice to
remove them from water for capturing images
onshore (Chin et al. 2017; Pedersen et al. 2022). This
is fast and inexpensive as SCUBA divers or remotely
operated vehicles (Butler et al. 2009) are not required,
but results in a collapsed appearance of the macro-
fouling species compared to underwater images.
Consequently, this study is limited to onshore images
of early macrofouling stages where overgrowth of spe-
cies by others is still at a limited level and an identifi-
cation of the species close to the surface is usually
possible. An example of fouled panels and the manual
segmentation into fouling classes is shown in
Figure 1. Our work aims to automate this process of
macrofouling image analysis.

Usually, the percentage cover and composition of
biofouling on test panels are either examined by on-
site visual assessment by experts following standar-
dized guidelines (ASTM International 2020) or by
digital imaging and subsequent random point annota-
tion using Coral Point Count with Excel extensions
(Kohler and Gill 2006) (CPCe). For visual assessment,
experts directly determine the attached species and
visually estimate their coverage on the entire panel.
CPCe tries to standardize the latter by sampling typic-
ally 50 – 100 uniformly distributed random points
over the panel which must be annotated with the
fouling species by experts from which percentage cov-
erages per species are calculated. Obviously, the
accuracy of both methods relies on the perception
and experience of the expert and the knowledge of
local fouling communities. Though CPCe is a more
quantitative approach, it induces new biases as non-
stratified random points cause clustering with large
unannotated areas sometimes disregarding entire foul-
ing classes present on panels with diverse fouling
communities making sampling error an important
consideration (Bloomfield et al. 2021). Both, expert
visual assessment and point-based annotation
approaches are valuable for the determination of bulk
metrics such as percentage cover, but do not provide
information to quantify the demographic change or
to conduct spatial analysis, which demand semantic
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segmentation (Pavoni et al. 2020). This offers localiz-
ability within time series data which allows for the
determination of per-pixel surface attachment of
organisms before they become overgrown, which is
an exceptionally beneficial metric for material and
epibiotic research.

Previous work for the automated analysis of early
stage macrofouling images aimed on the classification
of biofouling on the image level either for overall
determination of the level of fouling (Bloomfield et al.
2021) or single species recognition (Chin et al. 2017).
Apart from being mainly unsuitable underwater
images, it is generally possible to leverage these image
level annotations (Kolesnikov and Lampert 2016) or
abundant point annotations (Bearman et al. 2016) for
semantic segmentation by weakly supervised learning.
Unfortunately, the performance depends on the image
level of detail, thus many small (windingly shaped)
objects per image reduce the performance of both
methods as usually at least one labeled pixel per
object is necessary (Alonso et al. 2019). This pre-
requisite is not given as random point assignment for
fouled panel images with numerous tiny organisms is
ambiguous and sparse. However, for some large
objects per image like corals, this point annotation
has been automated by patch-based classification
(Beijbom et al. 2012; Chen et al. 2021). Unsupervised
clustering into separate fouling classes (First et al.
2021) is hindered by high intra-species variances.
Consequently, pixel-accurate semantic segmentation
for macrofouling images demands dense segmentation
masks and common fully convolutional network

(Shelhamer et al. 2017) variants such as U-Net
(Ronneberger et al. 2015), SegNet (Badrinarayanan
et al. 2017), DeepLab (Chen et al. 2018), or custom
adaptions of them. Previous works provide segmenta-
tions for attachment on marine current turbines
(Peng et al. 2020), biofouling on synthetic underwater
images (O’Byrne et al. 2018), and biofouling on
onshore panel images (Pedersen et al. 2022) without
further species classification (e.g. only microfouling,
macrofouling, panel). Also, single species segmenta-
tion of tunicates (Galloway et al. 2017) and barnacles
(O’Byrne et al. 2020) within a complex fouling com-
munity were demonstrated. A more detailed approach
is the patch-based segmentation of submerged panel
images into seven classes (bare, slime, algae, tunicates,
bryozoans, cnidaria, others) using sparse coding and a
support vector machine (First et al. 2021).
Unfortunately, the training dataset contains 2000
patches of size 9 � 9 pixels randomly selected from
five heavily fouled underwater panel images with the
same coating, which is unsuitable for our task,
because of the submerged recording process, the low
label detail, the limitation to one coating type, and its
specific fouling community. Similarly, the segmenta-
tion of onshore panel images into four classes (micro-
algae, macroalgae, animals, panel) by handcrafted
pixel features with a random forest classifier
(Pedersen et al. 2022) is inappropriate due to its
coarse prediction detail and the necessity for a tedious
feature adaptation to different species, coatings, and
sites.

Figure 1. Biofouling on coated panels and manual semantic segmentation. Photograph (a) of fouled PVC panels with epoxy coat-
ings mounted on a rack and lifted out of the water after several months of immersion at Port Canaveral in Florida, USA. Cropped
photograph (b) of a medium-fouled panel and the indexed color image (c) of its corresponding pixel-wise manual segmentation
into fouling classes.
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Hence, the reuse of labeled datasets, weakly super-
vised learning from random points, and unsupervised
clustering are unfeasible demanding the creation of a
new dataset with dense labels for the semantic seg-
mentation of onshore macrofouling images. For effi-
ciency reasons, it is common practice to use active
learning (Settles 2009) for the selection of informative
and representative examples for time-consuming
human labeling, which typically results in a perform-
ance close to full supervision with fewer labels (Yang
et al. 2017; Casanova et al. 2020). Recent approaches
make use of data-driven (Konyushkova et al. 2015;
Casanova et al. 2020) or hand-crafted heuristics
(Vezhnevets et al. 2012; Jain and Grauman 2016;
Gorriz et al. 2017; Yang et al. 2017; Sener and
Savarese 2018) to control this selection process for
semantic segmentation. We employ a previously
developed and straightforward pool-based method
(Yang et al. 2017) for biomedical image segmentation,
which considers the uncertainty of the samples and
approximates batch-wise a representative maximum
set cover of the unlabeled instances.

Essentially, there exists neither an approach for the
detailed semantic segmentation of onshore early stage
macrofouling images, which would allow for percent-
age cover, demographic change, and spatial analysis
to assist biofouling researchers to assess coatings and
to monitor the impact of climate change on fouling
communities, nor an annotated dataset that could be
used. The main contributions of this study were: (i) a
dataset with dense labels for semantic segmentation
was created, (ii) the variability of random point ana-
lysis was quantified, (iii) a customized U-Net as a
benchmark model and demonstrate its performance
and generalization was proposed, and (iv) layer mod-
els for epibiotic analysis and for the determination of
direct surface attachment as a novel biofouling metric
was generated.

Material and methods

Data acquisition

The macrofouling data were acquired through static
immersion of panels at three test sites within the
Indian River Lagoon system, Florida, USA located in
Port Canaveral (28�24028.76ʺ N, 80�37039.11ʺ W),
Melbourne (28�4036.05ʺ N, 80�3601.93ʺ W) and Grant
(27�55047.32ʺ N, 80�31032.15ʺ W). The test site
located in Port Canaveral has the greatest oceanic
influence with an average salinity of 34 ± 1.6 and aver-
age water temperature of 25 ± 3.8 �C. The Melbourne
test site is in the mixing zone of a freshwater creek

and the main estuary with an average salinity of
16 ± 4.6 and average water temperature of 27 ± 4.1 �C.
The Grant test site is in the main estuary further
away from freshwater influences and has an average
salinity of 25 ± 5.1 and average water temperature of
26 ± 4.5 �C.

The data were divided into three datasets with
varying degrees of sparse annotation and experimental
conditions. The panels used in the tests were made
from PVC or G10. For Dataset A, 13� 30 cm panels
were coated by manufacturers according to required
specifications using antifouling and fouling release
control coatings. For Datasets B and C, 25� 30 cm
panels were coated with InternationalVR Intergard
264VR using a roller and applied to a thickness of
156 mm wet (125 mm dry). The panels were immersed
vertically approximately 0.5m below the surface and
assessed by experts (ASTM International 2020).
Therefore, panel images were recorded onshore using
an autofocus at a distance of 50 cm without standar-
dized lightning conditions and saved in JPEG format.
Dataset A consisted of 486 panel images showing the
fouling situation on 10 different coatings using 2 – 6
replicates per coating type. Images were obtained by a
Nikon Coolpix AW120 and annotated with the pre-
sent macrofouling species at 50 random points by
expert I (Kohler and Gill 2006; ASTM International
2020). The photographs consisted of 108 images of
the Grant and Port Canaveral test sites (54 images
per site) recorded at 07/2019 and 378 images of the
Port Canaveral test site recorded between 01/2020
and 07/2020 (54 images per month). Dataset B was
composed of 16 images which were obtained by a
Nikon Coolpix AW100 and annotated with percent-
age coverage by the visual assessment of expert II
(ASTM International 2020). From each of the sites
Melbourne and Port Canaveral eight individual
images recorded between 01/2020 and 08/2021 were
used. Dataset C contained three-month time series for
the analysis of fouling progression at the two sites
Melbourne and Port Canaveral. For each site, five dif-
ferent panels were used and three images from three
consecutive months were recorded per panel between
10/2019 and 05/2021. The overall 30 images were
obtained by a Nikon Coolpix AW100 and annotated
with percentage coverage by the visual assessment of
expert II. The annotation experts I and II participated
in regular practice tests with other experts to ensure
comparable results for percentage coverage estima-
tion. For a fair verification of our approach, the data-
sets A and B were fused to dataset AþB and used
for dense labeling, training, validation, and active
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learning. Dataset C was used as an independent data-
set for the demonstration of generalization and
advanced analysis of assignment accuracy.

Data preprocessing

All images were cropped to obtain single panel pic-
tures. In addition, 12.5% of the top and bottom and
1% of the left right image borders were removed to
crop the fastening and holes. Images of the small pan-
els were resized to 1472� 2752 px and images of the
large panels to 3008� 2752 px. Subsequently the
images were enhanced by contrast stretching (25%
cutoff) and slight unsharp masking (r ¼ 1,
p ¼ 100%). The surface coverage annotation was
reduced to ten classes (bare, slime, barnacle, arbores-
cent bryozoan, encrusting bryozoan, colonial tunicate,
solitary tunicate, calcareous tubeworms, sponge, cni-
daria) with at least 50 random points per class.

The resulting panel images of dataset AþB were
sliced to tiles of 384� 384 px size with 64 px overlap.
This is a suitable size to capture sufficient contextual
information of large macrofouling organisms such as
barnacles or solitary tunicates, but small enough to
ensure a good distribution of rarely occurring macro-
fouling classes. The moderate labeling effort per tile
allowed an iterative buildup of the learning dataset
while monitoring that also rarely occurring classes are
well represented. The slicing generated a pool of over
16,000 unlabeled image tiles, from which samples for
annotation were selected.

Annotation and training methodology

For annotation, we decided to label only the very top
macrofouling organisms and not buried species dir-
ectly attached to the surface. For example, if a tube-
worm is covered by a transparent yellowish sponge,
those pixels are annotated as sponge. This approach is
at a first glance in contrast to visual assessment or
random point annotation by experts, who usually
focus on the species in direct contact with the surface.
For the semantic segmentation only the visible image
content was classified. Any estimation of underlying
layers requires the presented analysis of fouling
progression.

Initially, 398 image tiles were selected from the
unlabeled pool and experts were asked to select fur-
ther 602 tiles with underrepresented classes, which
were mainly barnacles, bare, cnidaria, sponges, and
tunicates, for dense labeling. From this labeled set,
additional 149 synthetically labeled samples covering

the overlap areas of four neighboring tiles were gener-
ated. The resulting set of 1,149 tiles was representa-
tively split into 862 tiles for training and 287 for
validation. For a balanced split, an evolutionary algo-
rithm (Blickle 2000) with tournament selection
(k ¼ 3Þ and elitism to minimize the Kullback-Leibler
divergence between the training and validation set
class distribution was used. To increase the diversity
and representativeness, we expanded the training set
by active learning with 400 image tiles following a
previously developed method for biomedical images
(Yang et al. 2017) with K ¼ 64 and k ¼ 16: However,
the uncertainty of an image tile by the entropy of its
predicted logits instead of the variance among boot-
strapped models was estimated. This avoids repeated
training of several models since the mean entropy of
a tile shows a proper correlation with the loss on the
validation set.

Image tiles of the dataset AþB were downsampled
by a factor of 2 without perceptional changes to
decrease the training time and memory consumption
and to reduce annotation inaccuracies on object con-
tours. While active learning decreased class imbalan-
ces by a preferred selection of rare and consequently
uncertain classes, we also utilized oversampling of
training set tiles containing minority classes. The class
weights wc was calculated from their normalized
probability pc in the training set and lower bounded
the weights to one:

wc ¼ maxc pc
pc

(1)

The number of additional samples ni per image tile
i was calculated from its normalized class probability
pc, i regarding that a tile with an average weight
should not be oversampled. a was empirically set to
2, which allowed for an enhanced control over the
process:

ni ¼ max
X

c
pc, i � wc � 1

N
�
X

i

X
c
pc, i � wc � a

� �
, 0

� �

(2)

During training data augmentations (flipping, rota-
tion, gray scaling, contrast changes, hue adjustments,
elastic transformation, class dropout, coarse dropout,
and contrast limited adaptive histogram equalization
(Pizer et al. 1990)) was employed to increase the
model robustness. The optimal strength of augmenta-
tions was obtained by RandAugment (Cubuk et al.
2020). Learning rate decay and early stopping were
also used.
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Model

The final model architecture is illustrated in
Supplementary Figure 5 and is based on U-Net
(Ronneberger et al. 2015) which yielded excellent per-
formance on various biomedical datasets (Moen et al.
2019; Isensee et al. 2021) along with proper hyper-
parameter tuning. The U-Net was enriched with a
pretrained EfficientNet B2 encoder (Tan and Le
2019), residual links in the decoder (He et al. 2016;
Jegou et al. 2017), self-attention layers on the channel
dimension (Hu et al. 2018) to learn cross-channel
correlations, and a rebalanced number of decoder
filters per expansion stage. Contrary to the original
U-Net, bilinear upsampling instead of transposed con-
volution to avoid checkerboard patterns (Odena et al.
2016), batch normalization (Ioffe and Szegedy 2015),
and ReLU6 activation (Krizhevsky and Hinton 2010;
Sandler et al. 2018) was used. Hyperparameters were
tuned by grid search to achieve the performance
reported.

Loss function

The semantic segmentation loss is a combination of
the dice loss (Drozdzal et al. 2016; Isensee et al. 2021)
and the cross-entropy loss which were calculated sep-
arately for each sample in a batch. It is of the form

L ¼ 1
2
� Ldice þLCEð Þ (3)

where LCE is the categorical cross-entropy loss and
the dice loss Ldice is of the form

Ldice ¼ 1� 2
Cj j

X
c2C

P
i2I y

c
i ŷ

c
iP

i2Iy
c
i þ ŷci

(4)

where is yci the one-hot encoded label and ŷci is the
softmax prediction of the network for each pixel i 2 I
of a training sample and each class c 2 C for the set
of all present classes C:

Implementation details

Training was implemented in TensorFlow. The uti-
lized optimizer was Adam (Kingma and Ba 2015)
with its default parameters, and a batch size of 16.
Two phases for training were used, whereby in the
first phase only the decoder was trained and in the
subsequent phase also higher encoder layers were fine
tuned. The initial learning rate of the first phase was
1� 10�3 and 1� 10�4 of the second phase.
Whenever the validation loss did not improve by
more than 1� 10�4 within the last 30 epochs, the

learning rate was decreased by a factor 5 with a lower
bound of 1� 10�6: Each training phase was limited
to 300 epochs, but early stopping was used to termin-
ate the training if the validation loss did not improve
within the last 30 epochs. Mixed precision training
until convergence took about 250 epochs in total
using a single Nvidia RTX 2070 8GB GPU, an AMD
3700X CPU, and 32GB of memory.

Random point sampling

For the statistical analysis of the random point anno-
tation approach, completely annotated panel images
from the dataset AþB containing all considered
classes were used. The process by uniform sampling
of 50 random points per panel image and repeated
this procedure 1000 times per image for statistically
reliable results was simulated. All probabilities and
errors were calculated a-posteriori meaning that class-
specific results for an image were only considered if
the class was present in this image. The class distribu-
tion from random points or the complete image was
given by their normalized pixel-wise occurrence pc:
The resulting mean absolute error (MAE), the mean
absolute percentage error (MAPE), and the left-out
probability for a class c are of the form:

MAE cð Þ ¼ 1
Icj jjNj

X
i2Ic

X
n2N

pc, i � p̂c, i, n

�� �� (5)

MAPE cð Þ ¼ 1
Icj jjNj

X
i2Ic

X
n2N

pc, i � p̂c, i, n

�� ��
pc, i

(6)

LOP cð Þ ¼ 1
Icj jjNj

X
i2Ic

X
n2N && p̂c, i,n > 0

1 (7)

Where Ic is the set of images containing class c,
Nj j is the number of repetitions per image, pc, i is the
relative probability of class c in image i 2 I, and
p̂c, i, n is the relative class probability for the n-th
sampled set of random points on image i:

Latent space visualization

For the visualization of the latent space spanned by
the encoder of our network, the feature maps of every
image tile from the highest encoder layer and per-
formed average pooling were extracted to obtain an
embedding representing the semantic information in
the entire tile. The resulting distribution of all image
tiles by channel-wise normalization to mean l ¼ 0
and standard deviation r ¼ 1 and subsequently per-
formed principal component analysis (PCA) was
transformed to reduce the dimensionality to 50
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preserving most of the variance. Then, t-SNE with a
perplexity of 50, PCA initialization, a learning rate of
200, and 2000 iterations was used to reduce the PCA
components to two dimensions.

Results

Dataset preparation

For the demonstration of the approach, a new anno-
tated tile dataset for the semantic segmentation of
onshore early stage macrofouling panel images that
were acquired at three sites in the Indian River
Lagoon system, Florida, USA has been created. The
dataset provides dense segmentation masks for ten
classes (bare, slime, barnacle, arborescent bryozoan,
encrusting bryozoan, colonial tunicate, solitary tuni-
cate, calcareous tubeworms, sponge, cnidaria) contain-
ing the dominant macrofouling species. In detail,
dataset AþB consists of 502 panel images with per-
centage coverage annotation, from which we extracted
square tiles for dense labeling selected randomly or
by experts to emphasize underrepresented species
(1,149) and by uncertainty and diversity aware active
learning (400). These 1,549 labeled tiles correspond to
10.9% of the area of all panel images in dataset AþB.
The obtained tile dataset was representatively split
into 1,262 tiles for training containing all samples
selected by active learning (Yang et al. 2017) and 287
tiles for validation. An independent dataset C consist-
ing of 30 panel images of three-month time series
with percentage coverage annotation for the demon-
stration of generalization and advanced analysis was
further established.

Random point annotation

For the determination of bulk biofouling metrics such
as percentage coverage estimation, random point sam-
pling is a valuable and fast tool to analyze large time
series with several replicates to discover trends. As
any method that relies on discrete sampling, rare
classes face the risk of large potential errors. Using
the labeled data, the accuracy of this method for sin-
gle panel images by imitating the sampling and
assessment process with 50 random points was inves-
tigated. Supplementary Table 1 shows the results of
the statistical study. While the MAE between the
obtained and the real percentage coverage was usually
small (< 5%), the relative percentage coverage error
of species commonly occupying only small areas was
elevated as quantified by the MAPE. Fine stretched or
branched organisms like tubeworms or arborescent

bryozoans suffered from a misestimation nearly as
high as their surface coverage. Clustered or patch-like
occurrences in only some image parts as regularly
seen for encrusting bryozoans or sponges similarly
caused a varying coverage estimation. The left-out
probability (LOP) describes how frequently a class
was completely disregarded by random points if pre-
sent in an image. For classes that typically covered
the whole panel (bare) or large areas (barnacle, cni-
daria, solitary tunicates) the LOP was very low, but
up to 50% for rare and irregularly distributed classes
(tubeworms, arborescent bryozoans). These species
experience a systematic underestimation from single
image analysis. Both problems are also exemplified in
Supplementary Figure 1, where in the first trial
sponges and colonial tunicates were entirely missed
out and in the second trial tubeworms were severely
overestimated if a limited number of 50 random
points was used.

Automated semantic segmentation

As an initial solution for the semantic segmentation
of macrofouling panel images, we propose a tuned U-
Net enhanced with some recent technologies such as
a pretrained EfficientNet (Tan and Le 2019) encoder,
residual decoder links, and channel attention layers.
The hyperparameters were fine-tuned by simple grid
search. Though there are further potential improve-
ments, it was intended to use this network as a base-
line for the benchmark of this complex dataset. The
results of the modifications are shown in Table 1
using the original U-Net as a baseline. The applica-
tion of transfer learning using a pretrained encoder is
common practice for small datasets and gave the
greatest improvement of 20% in intersection over
union (IoU) over the baseline. Additional residual
links, channel attention, and hyperparameter tuning
resulted in minor increases in IoU but allowed for a
better awareness of demanding cases and underrepre-
sented classes. Supplementary Figure 2 perceptually
shows the performance at random examples from the
validation set.

The class-wise performance on the evaluated met-
rics is shown in Supplementary Table 2. Classes that
consist of branched (arborescent bryozoan, cnidaria)
or elongated structures (tubeworms) or typically have
seamless transition to slime (barnacles) have a
decreased IoU of 50 – 60%, because prediction faults
at borders are heavily penalized by this metric. The
confusion matrix illustrated in Supplementary Figure
3 shows a pairwise correlation between slime and
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arborescent bryozoan, barnacle, cnidaria, colonial
tunicate, and tubeworm indicating a slight bias
towards slime for human annotators.

The semantic representation of images through a
network is decisive for generalization and its inter-
pretation. After random and expert-based tile selec-
tion, active learning considered the mean information
entropy of predicted logits as image uncertainty and
allowed for annotation of ambiguous situations and a

smooth sampling throughout the latent space as
shown in Figure 2a. Although clusters with a high vis-
ual variance led to elevated uncertainty, the network
learned a robust understanding of such macrofouling
species. An inspection of the largest clusters as shown
in Figure 2b revealed a grouping of phenotypes even
with high visual variations. While separate growth
stages of the same macrofouling species are not neces-
sarily close to each other (e.g. tubeworms in (F) –

Table 1. Performance of adapted U-Net model architectures.
Configuration Accuracy IoU F1 Precision Recall

U-Net (baseline) 0.959 0.614 0.746 0.758 0.739
þ Pretrained EfficientNet encoder 0.974 0.735 0.841 0.842 0.841
þ Residual decoder links 0.976 0.747 0.849 0.864 0.836
þ Channel attention & rebalanced decoder filters 0.976 0.749 0.849 0.861 0.840

Results for image tiles from validation set. Best performing configurations for a metric are highlighted.

Figure 2. Visualization of the semantic latent space. Two-dimensional t-SNE visualization (a) of the high-level features extracted
by the encoder path of the U-Net and the mean uncertainty per image tile. Random examples (b) of clusters indicated in (a) with
similar macrofouling classes but high perceptual variation.
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(H) and (K)), there is usually a smooth transition
between co-occurring species (e.g. bare to slime (A) –
(C), sponges and colonial tunicates (J)) and different
settlement densities of the same species (e.g. for tube-
worms low (F), medium (E), (H), and high (G)). For
a detailed insight, Supplementary Figure 4 illustrates
the spatial distribution of classes categorized by their

share of a labeled image tile which emphasized the
above findings.

For an elaborated comparison to human experts,
the prediction of the model to the sparse percentage
coverage annotation of time series from dataset
AþB. The images of the analyzed time series share
an overlapping area of 8.2% with the training and

Figure 3. Comparison of automated and manual analysis. Seven-month time series (a) of low to moderate fouled panel images
with coating P from dataset Aþ B after immersion at Port Canaveral test site, their segmentation, and the surface coverage
acquired by automated and manual estimation. Surface coverage of seven-month time series (b) of fouled panels with different
coatings from dataset Aþ B obtained by U-Net (left bars) and human experts (right bars) after immersion at the Port Canaveral
test site. Reported uncertainties refer to the standard error among the n ¼ 6 replicates per coating. Coatings with fewer replicates
or shorter time series are not shown.
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1.8% with the validation dataset. An example of a 7-
month time series is shown in Figure 3a where the
fast demographic change caused by settlement,
growth, dominance, and predatory behavior becomes
visible. Figure 3b and Table 2 show the generalization
of our approach among various coatings and repli-
cates. Though human and the network predicted
similar trends, the U-Net suffered from continuous
underestimation of tubeworms (MAE of 12 ± 1%) for
large surface coverages (coatings F, P) caused by slime
overgrowth. The class bare on primarily clean (coat-
ing H) and slime-dominated panels (coating B – D,
F) was slightly overestimated (MAE of 10 ± 1%),
because of the immense perceptual similarity between
slime and wet coating parts or water droplets in the
images. However, the complementary underestimation
and overestimation of slime happened regularly
(MAE of 24 ± 1%) because of slime overgrowth and
its high perceptual variance. Similarly, colonial tuni-
cates (MAE of 8 ± 1%) were slightly overestimated
(coatings A – D) in place of sponges (3 ± 0%) and

vice versa (coatings G, P) as both show diverse distri-
butions in colors and textures. Sporadically occurring
inequalities in the percentage coverage encrusting and
arborescent bryozoans (MAEs of �5%) across several
replicates stem from challenging seasonal phenotypes
and growth stages insufficiently captured by the train-
ing set. Nevertheless, most misestimations were rela-
tively small in absolute values (MAE � �10%)
compared to slime (24%). The relative differences
were higher because MAPE overestimates the error
for small percentage coverages. The remaining trend
distinctions of barnacles, solitary tunicates, cnidaria,
and other unnamed species were inside the margin of
error.

For further evaluation, an independent dataset C of
the Melbourne test site to show the generalization of
the proposed approach within the Indian River
Lagoon system was used. The results in Figure 4 and
Table 2 show similar trends for human and U-Net
surface coverage predictions but with smaller misesti-
mation tendencies of tubeworms, colonial tunicates,

Table 2. Generalization of automated semantic segmentation.

Metric Data Bare Slime
Encrusting
Bryozoan

Calcareous
Tubeworm

Colonial
Tunicate Barnacle Sponge

Arborescent
Bryozoan

Solitary
Tunicate

Cnidaria
Soft Others

MAE Aþ B 10 ± 1 24 ± 1 6± 1 12 ± 1 8± 1 1± 0 3± 0 3± 0 0± 0 0± 0 0± 0
C 3± 2 31 ± 4 10 ± 3 12 ± 3 7 ± 2 6 ± 2 3 ± 1 1 ± 0 0± 0 4 ± 2 4± 3

MAPE Aþ B 43 ± 18 151 ± 23 33 ± 2 52 ± 3 47 ± 4 13 ± 2 25 ± 5 32 ± 7 1± 1 4± 1 1± 1
C 78 ± 66 481 ± 243 60 ± 8 68 ± 5 66 ± 48 68 ± 10 25 ± 8 63 ± 21 0± 0 33 ± 9 23 ± 8

The class-wise generalization error on time series from datasets Aþ B (excerpts of 8.2 % for training and 1.8 % for validation) and dataset C (test) is
quantified by the mean absolute error (MAE) and the mean absolute percentage error (MAPE) of the predicted and human annotated macrofouling per-
centage coverage per panel image. Metrics smaller or equal for dataset C than for Aþ B are highlighted. All values are given as percentage. Reported
uncertainties refer to the standard error.

Figure 4. Comparison of manual and automated analysis. Panel-wise comparison of the percentage coverage on three-month
time series from dataset C analyzed automatically by U-Net (left bars) and by visual assessment of human experts (right bars).
The percentage coverage of direct surface attachment (a) was derived from the segmentation masks of each panel-wise time
series.
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and bare coatings (MAEs of 12 ± 3, 7 ± 2, and 3 ± 2%)
as compared to the above described species. An
advanced difficulty in dataset C were novel pheno-
types of established species like encrusting bryozoan
(e.g. Melbourne 2, 3), barnacles (e.g. Melbourne 3,
Port 5), and cnidaria (e.g. Melbourne 5, Port 3) which
exhibited a completely different morphology and tex-
ture. These were misclassified as slime by the U-Net
probably caused by the large variance of the slime
class and the slight annotation bias towards slime.
This phenomenon is also reflected by the generaliza-
tion error of species with novel phenotypes (MAE of
4 – 10%) and of slime (31 ± 4%) with larger error
since slime is especially overestimated on these panels
but elsewhere closer to human assessment. Unknown
classes such as oysters (Melbourne 4) were assigned
to their perceptually closest substitutes (i.e. barnacles)
and could not be identified by design. Furthermore,
the percentage coverage of arborescent bryozoans was
marginally overestimated (MAE of 1 ± 0%) because
their fine structures often entangled other species
(Port 1, 3). While the absolute errors of some species
slightly increased compared to dataset AþB, they
remain small (MAE � �10%) compared to slime
(31%). In summary, this comparison showed the
robustness and generalization ability of the approach
for known species and similar phenotypes under dif-
ferent experimental conditions within the Indian
River Lagoon system.

Novel applications

The opportunity of a precise localization of macro-
fouling organisms within inferred segmentation masks
enables novel applications that are impossible with
annotations based on arbitrarily determined and lim-
ited sampling points. The image series processed with
the model were a time-resolved observation of the
species in the top layer on a panel. From this series,
information was merged into a layer model (Figure
5c) for each panel to create a spatial representation of
fouling progression over time. The layer model was
used to compute exclusively the bottom layer (Figure
5a, Figure 4) assuming that the classes slime and bare
were successfully dominated by overgrowing species.
It enabled the determination of the direct surface
attachment which is the percentage coverage of
organisms interacting with the developed coating. In
the shown example (Figure 5a) species in direct con-
tact with the surface are predominantly tubeworms
(52%), slime (28%), and encrusting bryozoans (12%).
This is a novel biofouling metric with considerable

relevance for marine ecologists and material
researchers.

The layer model further allowed for an in-depth
epibiotic study as illustrated in Figure 5b. While one
month after immersion the surface was colonized by
slime (73%) and tubeworms (27%), proceeding
immersion led to an overgrowth. After two months,
areas previously covered by slime predominantly
remained slime and only a small fraction (27%) was
overgrown by tubeworms. Areas initially covered by
tubeworms were majorly (68%) overgrown by slime.
After the third month, additional species occurred.
Encrusting bryozoans colonized preferably slime
dominated areas (67%) but also tubeworms (26%).
Tubeworms in turn were primarily overgrown by
slime (69%) and encrusting bryozoans (26%). The
observation of such relationships and the generation
of a successional diagram is exceptionally challenging
with common analysis methods and provides valuable
epibiotic insight that can be exploited in future
studies.

Discussion

Automated macrofouling analysis of onshore panel
images for the quantification of the demographic
change or for spatial analysis demands pixel-accurate
semantic segmentation (Pavoni et al. 2020), since
sparse annotations provide neither the necessary
locality nor the prerequisites for weakly supervised
learning (Alonso et al. 2019). Thus, the first dataset
for this purpose satisfying the required precision of
dense labels and covering the fouling community on
different protective coatings was introduced. The
annotation of representatives from dataset AþB by
smoothly sampling over the entire latent space whilst
minimizing uncertainty using active learning was
ensured as illustrated in Figure 2a. However, as the
dataset is currently limited to macrofouling organisms
found in Florida and their corresponding phenotypes,
it causes a domain bias and should be expanded with
data from other sites and fouling classes. The
obtained dataset is also of interest for other tasks in
naval research as it contains very early and later foul-
ing stages and a high variance in morphological struc-
tures, colors, and texture characteristics for marine
organisms.

Using the manually segmented images, it was pos-
sible to quantify potential inherent sampling inaccura-
cies in random point assessment for rarely occurring
classes such as arborescent and encrusting bryozoans,
tubeworms, and sponges. The observations on
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sampling accuracy agree with previous studies
(Pavoni et al. 2020; Bloomfield et al. 2021) that found
the sampling inaccuracy of random point annotations
for individual images of vessels is considerable.
Nonetheless, this method is valuable for percentage
coverage estimation when multiple replicates are used
although manual analysis requires expert knowledge
about local fouling communities and is a time con-
suming and tiring process (Gormley et al. 2018).

In this work we proposed a method for the seman-
tic segmentation of onshore macrofouling images
enhancing previous single species classification (Chin
et al. 2017) and overall fouling determination
(Bloomfield et al. 2021) approaches. A U-Net with
several improvements and coarse hyperparameter
optimization was applied, as the straightforward
design focus attention on the approach itself and the
presented applications to inspire future research in
this novel direction. Therefore, this model was pro-
posed as a benchmark on this dataset and encourages
its improvement and utilization for transfer learning,
neighborhood analysis, and fine-grained classification
of segmented macrofouling organisms.

Compared to similar studies for underwater coat-
ing inspections (First et al. 2021) and onshore coat-
ing ratings (Pedersen et al. 2022) this approach
covered a greater variety of fouling organisms and
coatings on onshore images. The mean accuracy of
58% for seven classes was outperformed by this
model with 97.6% for ten similar classes, but with a
different recording process and higher labelling
detail. While the proposed method is currently lim-
ited to a subset of the fouling organisms occurring
in Florida, it shows similar trends as manual analysis
and generalizes over various coating types and repli-
cates on dataset AþB. The results on dataset C
show the robustness of our method regarding known
phenotypes of macrofouling classes under different
experimental conditions within the Indian River
Lagoon system. While the inclusion of additional
macrofouling (sub)species and geographically differ-
ent sites might demand model retraining with new
data to compensate for the domain bias, the general-
ization suggests that the framework (model architec-
ture and data selection by active learning) allows this
by fine-tuning.

Figure 5. Determination of macrofoulers in direct coating contact from image time series during fouling progression. Three-month
time series (a) of a moderately-fouled coated panel from dataset C after immersion at the Melbourne test site (first row), its
image-wise segmentation (second row), and the generated direct surface attachment (right). Third and fourth row show close-ups
of the yellow squares. Succession diagram (b) of the full panel for epibiotic analysis with timeline from inside out. Classes with
less than 1 % coverage were removed for better visibility. Three-dimensional projection of the layer model (c) of the close-up
exposing successional growth.

BIOFOULING 75



The established possibility of macrofouling localiza-
tion within time series data allowed for a spatial and
demographic analysis which is a huge advantage over
manual analysis and reveals new insights for material
research, environmental monitoring, and epibiotic
studies. The derived layer model and the more speci-
alized direct surface attachment analysis demonstrate
the new analytical possibilities. Furthermore, the level
of detail of the generated layer model could be con-
trolled by the total immersion duration and the time
between consecutive photographs of the panels.

Conclusions

Semantic segmentation of macrofouling on photo-
graphs of test panels is a demanding task requiring
large amounts of data and detailed annotations. This
work presents an annotated dataset and for 10 macro-
fouling species in the Indian River Lagoon system and
an automated tool for their segmentation. The adapted
U-Net model architecture and uncertainty-aware active
learning approach form a powerful framework which
generalizes over different coatings, replicates, and sites.
It achieved a mean F1 score of 84.9% on the validation
data and a MAE averaged over species of 6% for panel
images of the same distribution and of 7% for image
of a different distribution. The framework allows the
inclusion of new (sub)species and geographical places
by fine-tuning but necessitates retraining with extra
data to compensate for the domain bias. It is hoped
that the dataset and approach will find application for
the detailed analysis of fouling communities on coat-
ings, their shifts due to ocean acidification, fouling
progression and epibiotic studies, the detection of inva-
sive species, environmental monitoring, and hydro-
dynamic predictions of fouled vessels.
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